For those following my research you can now read and review a preprint version of my manuscript at PeerJ. This is exciting as its the first time my work has become public this way. If you have any comments or questions you can comment on the PeerJ version as long as you have a PeerJ account (Its free and a great resource).
You can find the article here:
https://peerj.com/preprints/704/
Tuesday, December 16, 2014
Monday, December 8, 2014
12 8 2014 News and Reflections on Summer Field Work
12/8/2014
As the year comes to a close, I'm happy to announce that the manuscript from the data generated from field work this past year is coming along nicely. I'll announce here when its available for viewing.
Also thanks to everyone who has taken the time to read this blog. I've only been going for about 6 months now but its been awesome. I can't wait to see what next year brings with all the RAD-Seq data that I'm going to work on.
Anyway to post some content lets all be nostalgic for those warm summer days as we get closer to Christmas.
Wednesday, November 26, 2014
11 24 2014 Non Parametric Test for Differences in Size
y1boxplot.R
Jake H
Wed Nov 26 15:18:25 2014
require(ggplot2)
## Loading required package: ggplot2
require(plyr)
## Loading required package: plyr
require(splitstackshape)
## Loading required package: splitstackshape
## Loading required package: data.table
require(nparcomp)
## Loading required package: nparcomp
## Loading required package: multcomp
## Loading required package: mvtnorm
## Loading required package: survival
## Loading required package: splines
## Loading required package: TH.data
y1size=read.csv('Y1size.csv')
#creates dataframe and reads in the CSV file for sizes
View(y1size)
#check data
y1size$Date<-as.Date(y1size$Date, "%m/%d/%Y")
#make R understand dates
y1meansize<-ddply(y1size,.(Date,Site,Pop),summarise, mean_size=mean(Length.mm,na.rm=T))
#create table of ave size for outplant and year one for each pop at each site
#print it out
print(y1meansize)
## Date Site Pop mean_size
## 1 2013-08-16 Fidalgo 2H 10.67
## 2 2013-08-16 Fidalgo 2N 11.60
## 3 2013-08-16 Fidalgo 2S 11.25
## 4 2013-08-16 Manchester 4H 10.53
## 5 2013-08-16 Manchester 4N 13.40
## 6 2013-08-16 Manchester 4S 11.30
## 7 2013-08-16 Oyster Bay 1H 10.49
## 8 2013-08-16 Oyster Bay 1N 10.90
## 9 2013-08-16 Oyster Bay 1S 12.15
## 10 2014-09-19 Oyster Bay 1H 27.96
## 11 2014-09-19 Oyster Bay 1N 34.65
## 12 2014-09-19 Oyster Bay 1S 27.98
## 13 2014-10-17 Fidalgo 2H 24.40
## 14 2014-10-17 Fidalgo 2N 29.10
## 15 2014-10-17 Fidalgo 2S 28.91
## 16 2014-10-24 Manchester 4H 21.49
## 17 2014-10-24 Manchester 4N 24.37
## 18 2014-10-24 Manchester 4S 23.99
#now we need to create subsets for each site for out plant and end of year 1
outmany1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2013-08-16"&Site=="Manchester")
outfidy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2013-08-16"&Site=="Fidalgo")
outoysy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2013-08-16"&Site=="Oyster Bay")
endmany1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2014-10-24"&Site=="Manchester")
endfidy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2014-10-17"&Site=="Fidalgo")
endoysy1<-ddply(y1size,.(Length.mm,Pop,Tray,Sample,Area),subset,Date=="2014-09-19"&Site=="Oyster Bay")
ggplot()+
geom_boxplot(data=outmany1,aes(x=Pop,y=Length.mm,fill=Pop))+
scale_colour_manual(values=c("blue","purple","orange"))+
scale_fill_manual(values=c("blue","purple","orange"))
ggplot()+
geom_boxplot(data=endmany1,aes(x=Pop,y=Length.mm,fill=Pop))+
scale_colour_manual(values=c("blue","purple","orange"),guide=F)+
scale_fill_manual(values=c("blue","purple","orange"), guide=F)+
ylim(c(0,50))+
labs(x="Population",y="Average Length (mm)")+
scale_x_discrete(labels=c("Dabob","Fidalgo","Oyster Bay"))+
annotate("text", x=c("4N","4H","4S"),y=50, label=c("A","B","A"),size=10)+
theme_bw()+
theme(axis.text.x=element_text(size=20),
axis.title.x=element_text(size=25),
axis.title.y=element_text(size=25, vjust=2),
axis.text.y=element_text(size=20))
ggplot()+
geom_boxplot(data=outfidy1,aes(x=Pop,y=Length.mm,fill=Pop))+
scale_colour_manual(values=c("blue","purple","orange"))+
scale_fill_manual(values=c("blue","purple","orange"))
ggplot()+
geom_boxplot(data=endfidy1,aes(x=Pop,y=Length.mm,fill=Pop))+
scale_colour_manual(values=c("blue","purple","orange"),guide=F)+
scale_fill_manual(values=c("blue","purple","orange"),guide=F)+
ylim(c(0,50))+
labs(x="Population",y="Average Length (mm)")+
scale_x_discrete(labels=c("Dabob","Fidalgo","Oyster Bay"))+
annotate("text", x=c("2N","2H","2S"),y=50, label=c("A","B","A"),size=10)+
theme_bw()+
theme(axis.text.x=element_text(size=20),
axis.title.x=element_text(size=25),
axis.title.y=element_text(size=25, vjust=2),
axis.text.y=element_text(size=20))
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
ggplot()+
geom_boxplot(data=outoysy1,aes(x=Pop,y=Length.mm,fill=Pop))+
scale_colour_manual(values=c("blue","purple","orange"))+
scale_fill_manual(values=c("blue","purple","orange"))
ggplot()+
geom_boxplot(data=endoysy1,aes(x=Pop,y=Length.mm,fill=Pop))+
scale_colour_manual(values=c("blue","purple","orange"),guide=F)+
scale_fill_manual(values=c("blue","purple","orange"),guide=F)+
ylim(c(0,50))+
labs(x="Population",y="Average Length (mm)")+
scale_x_discrete(labels=c("Dabob","Fidalgo","Oyster Bay"))+
annotate("text", x=c("1N","1H","1S"),y=50, label=c("B","A","A"),size=10)+
theme_bw()+
theme(axis.text.x=element_text(size=20),
axis.title.x=element_text(size=25),
axis.title.y=element_text(size=25, vjust=2),
axis.text.y=element_text(size=20))
## Warning: Removed 1 rows containing non-finite values (stat_boxplot).
normality<-ddply(y1size,.(Date,Site,Pop),summarize,n=length(Length.mm),sw=shapiro.test(as.numeric(Length.mm))[2])
y1size$Pop2<-y1size$Pop
y1size$Pop2<-revalue(y1size$Pop2,c("1H"="H","2H"="H","4H"="H","1N"="N","2N"="N","4N"="N","1S"="S","2S"="S","4S"="S"))
#Here we subset the data set to only include data from the end of year 1
endy1<-ddply(y1size,.(Length.mm,Site,Pop,Tray,Sample,Area,Pop2),subset,Date>="2014-09-19")
normality<-ddply(endy1,.(Date,Site,Pop),summarize,n=length(Length.mm),sw=shapiro.test(as.numeric(Length.mm))[2])
endy1$log<-log2(endy1$Length.mm)
endy1$asin<-asin(sign(endy1$Length.mm)*sqrt(abs(endy1$Length.mm)))
## Warning: NaNs produced
normality<-ddply(endy1,.(Date,Site,Pop),summarize,n=length(log),sw=shapiro.test(as.numeric(log))[2])
sizekw<-kruskal.test(endy1$Length.mm~endy1$Site,endy1)
print(sizekw)
##
## Kruskal-Wallis rank sum test
##
## data: endy1$Length.mm by endy1$Site
## Kruskal-Wallis chi-squared = 426.2, df = 2, p-value < 2.2e-16
sizekwpop<-kruskal.test(endy1$Length.mm~endy1$Pop2,endy1)
print(sizekwpop)
##
## Kruskal-Wallis rank sum test
##
## data: endy1$Length.mm by endy1$Pop2
## Kruskal-Wallis chi-squared = 230, df = 2, p-value < 2.2e-16
require(PMCMR)
## Loading required package: PMCMR
sizenemenyi1<-posthoc.kruskal.nemenyi.test(x=endy1$Length.mm,g=endy1$Site, method="Tukey")
## Warning: Ties are present, p-values are not corrected.
sizenemenyi1
##
## Pairwise comparisons using Tukey and Kramer (Nemenyi) test
## with Tukey-Dist approximation for independent samples
##
## data: endy1$Length.mm and endy1$Site
##
## Fidalgo Manchester
## Manchester < 2e-16 -
## Oyster Bay 1.1e-12 < 2e-16
##
## P value adjustment method: none
sizenemenyi2<-posthoc.kruskal.nemenyi.test(x=endy1$Length.mm,g=endy1$Pop2, method="Tukey")
## Warning: Ties are present, p-values are not corrected.
sizenemenyi2
##
## Pairwise comparisons using Tukey and Kramer (Nemenyi) test
## with Tukey-Dist approximation for independent samples
##
## data: endy1$Length.mm and endy1$Pop2
##
## H N
## N < 2e-16 -
## S 3.4e-14 4.9e-08
##
## P value adjustment method: none
sizenemenyi3<-posthoc.kruskal.nemenyi.test(x=endy1$Length.mm,g=endy1$Site:endy1$Pop2, method="Tukey")
## Warning: Ties are present, p-values are not corrected.
sizenemenyi3
##
## Pairwise comparisons using Tukey and Kramer (Nemenyi) test
## with Tukey-Dist approximation for independent samples
##
## data: endy1$Length.mm and endy1$Site:endy1$Pop2
##
## Fidalgo:H Fidalgo:N Fidalgo:S Manchester:H Manchester:N
## Fidalgo:N < 2e-16 - - - -
## Fidalgo:S 7.8e-14 0.9995 - - -
## Manchester:H 2.7e-07 < 2e-16 < 2e-16 - -
## Manchester:N 1.0000 9.2e-14 1.1e-13 7.3e-06 -
## Manchester:S 0.9786 < 2e-16 8.5e-14 0.0004 0.9880
## Oyster Bay:H 3.1e-10 0.2781 0.6352 1.2e-14 2.4e-08
## Oyster Bay:N < 2e-16 1.5e-11 7.2e-13 < 2e-16 < 2e-16
## Oyster Bay:S 1.8e-09 0.6813 0.9255 9.1e-14 5.7e-08
## Manchester:S Oyster Bay:H Oyster Bay:N
## Fidalgo:N - - -
## Fidalgo:S - - -
## Manchester:H - - -
## Manchester:N - - -
## Manchester:S - - -
## Oyster Bay:H 9.5e-12 - -
## Oyster Bay:N < 2e-16 1.0e-13 -
## Oyster Bay:S 6.0e-11 1.0000 6.9e-12
##
## P value adjustment method: none
Subscribe to:
Posts (Atom)