Tuesday, November 4, 2014

11 4 2014 Brooder Proportion Stats with Interaction Graph

reproanova.R
require(ggplot2)
## Loading required package: ggplot2
require(plyr)
## Loading required package: plyr
#Loads required plyr package and a ggplot2 package for plotting
reproaov<-aov(repro4$Brooders~repro4$Site+repro4$Pop+repro4$Site:repro4$Pop,repro4)
summary(reproaov)
##                         Df Sum Sq Mean Sq F value  Pr(>F)    
## repro4$Site              2    138    69.2   12.60 1.1e-05 ***
## repro4$Pop               2     99    49.6    9.03 0.00023 ***
## repro4$Site:repro4$Pop   4     31     7.7    1.41 0.23609    
## Residuals              117    642     5.5                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
SitevPopTukey<-TukeyHSD(reproaov)
print(SitevPopTukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = repro4$Brooders ~ repro4$Site + repro4$Pop + repro4$Site:repro4$Pop, data = repro4)
## 
## $`repro4$Site`
##                          diff     lwr    upr  p adj
## Manchester-Fidalgo    -0.8571 -2.0710 0.3567 0.2186
## Oyster Bay-Fidalgo     1.6667  0.4529 2.8805 0.0041
## Oyster Bay-Manchester  2.5238  1.3100 3.7376 0.0000
## 
## $`repro4$Pop`
##         diff     lwr   upr  p adj
## N-H -0.04762 -1.2614 1.166 0.9952
## S-H  1.85714  0.6433 3.071 0.0012
## S-N  1.90476  0.6910 3.119 0.0009
## 
## $`repro4$Site:repro4$Pop`
##                                 diff      lwr    upr  p adj
## Manchester:H-Fidalgo:H    -7.143e-02 -2.87058 2.7277 1.0000
## Oyster Bay:H-Fidalgo:H     1.286e+00 -1.51344 4.0849 0.8749
## Fidalgo:N-Fidalgo:H       -4.330e-15 -2.79915 2.7992 1.0000
## Manchester:N-Fidalgo:H    -5.000e-01 -3.29915 2.2992 0.9997
## Oyster Bay:N-Fidalgo:H     1.571e+00 -1.22773 4.3706 0.6987
## Fidalgo:S-Fidalgo:H        2.214e+00 -0.58487 5.0134 0.2427
## Manchester:S-Fidalgo:H     2.143e-01 -2.58487 3.0134 1.0000
## Oyster Bay:S-Fidalgo:H     4.357e+00  1.55799 7.1563 0.0001
## Oyster Bay:H-Manchester:H  1.357e+00 -1.44201 4.1563 0.8379
## Fidalgo:N-Manchester:H     7.143e-02 -2.72773 2.8706 1.0000
## Manchester:N-Manchester:H -4.286e-01 -3.22773 2.3706 0.9999
## Oyster Bay:N-Manchester:H  1.643e+00 -1.15630 4.4420 0.6456
## Fidalgo:S-Manchester:H     2.286e+00 -0.51344 5.0849 0.2061
## Manchester:S-Manchester:H  2.857e-01 -2.51344 3.0849 1.0000
## Oyster Bay:S-Manchester:H  4.429e+00  1.62942 7.2277 0.0001
## Fidalgo:N-Oyster Bay:H    -1.286e+00 -4.08487 1.5134 0.8749
## Manchester:N-Oyster Bay:H -1.786e+00 -4.58487 1.0134 0.5353
## Oyster Bay:N-Oyster Bay:H  2.857e-01 -2.51344 3.0849 1.0000
## Fidalgo:S-Oyster Bay:H     9.286e-01 -1.87058 3.7277 0.9801
## Manchester:S-Oyster Bay:H -1.071e+00 -3.87058 1.7277 0.9529
## Oyster Bay:S-Oyster Bay:H  3.071e+00  0.27227 5.8706 0.0203
## Manchester:N-Fidalgo:N    -5.000e-01 -3.29915 2.2992 0.9997
## Oyster Bay:N-Fidalgo:N     1.571e+00 -1.22773 4.3706 0.6987
## Fidalgo:S-Fidalgo:N        2.214e+00 -0.58487 5.0134 0.2427
## Manchester:S-Fidalgo:N     2.143e-01 -2.58487 3.0134 1.0000
## Oyster Bay:S-Fidalgo:N     4.357e+00  1.55799 7.1563 0.0001
## Oyster Bay:N-Manchester:N  2.071e+00 -0.72773 4.8706 0.3279
## Fidalgo:S-Manchester:N     2.714e+00 -0.08487 5.5134 0.0649
## Manchester:S-Manchester:N  7.143e-01 -2.08487 3.5134 0.9965
## Oyster Bay:S-Manchester:N  4.857e+00  2.05799 7.6563 0.0000
## Fidalgo:S-Oyster Bay:N     6.429e-01 -2.15630 3.4420 0.9983
## Manchester:S-Oyster Bay:N -1.357e+00 -4.15630 1.4420 0.8379
## Oyster Bay:S-Oyster Bay:N  2.786e+00 -0.01344 5.5849 0.0521
## Manchester:S-Fidalgo:S    -2.000e+00 -4.79915 0.7992 0.3760
## Oyster Bay:S-Fidalgo:S     2.143e+00 -0.65630 4.9420 0.2834
## Oyster Bay:S-Manchester:S  4.143e+00  1.34370 6.9420 0.0003
#Standard ANOVA and TukeyHSD on non transformed data. Finds huge difference between pops and sites but heavily skewed and non normaly distributed.
repro4$arcsinbrooders<-asin(sign(repro4$Brooders)*sqrt(abs(repro4$Brooders)))
## Warning: NaNs produced
repro4$arcsinbrooders<-replace(repro4$arcsinbrooders,is.na(repro4$arcsinbrooders),0)
#For fun, arc sine transformed brooder data. This is essentially meaningless in the long run. 
reproaov2<-aov(repro4$arcsinbrooders~repro4$Site+repro4$Pop+repro4$Site:repro4$Pop,repro4)
summary(reproaov2)
##                         Df Sum Sq Mean Sq F value Pr(>F)
## repro4$Site              2    0.3   0.137    0.44   0.64
## repro4$Pop               2    1.4   0.725    2.35   0.10
## repro4$Site:repro4$Pop   4    2.0   0.490    1.59   0.18
## Residuals              117   36.1   0.309
arcsinbroodertukey<-TukeyHSD(reproaov2)
print(arcsinbroodertukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = repro4$arcsinbrooders ~ repro4$Site + repro4$Pop + repro4$Site:repro4$Pop, data = repro4)
## 
## $`repro4$Site`
##                          diff     lwr    upr  p adj
## Manchester-Fidalgo     0.1122 -0.1757 0.4001 0.6255
## Oyster Bay-Fidalgo     0.0374 -0.2505 0.3253 0.9489
## Oyster Bay-Manchester -0.0748 -0.3627 0.2131 0.8112
## 
## $`repro4$Pop`
##        diff     lwr     upr  p adj
## N-H -0.1496 -0.4375 0.13827 0.4358
## S-H -0.2618 -0.5497 0.02607 0.0827
## S-N -0.1122 -0.4001 0.17567 0.6255
## 
## $`repro4$Site:repro4$Pop`
##                                 diff     lwr    upr  p adj
## Manchester:H-Fidalgo:H     4.488e-01 -0.2151 1.1127 0.4539
## Oyster Bay:H-Fidalgo:H     3.366e-01 -0.3273 1.0005 0.8016
## Fidalgo:N-Fidalgo:H        2.244e-01 -0.4395 0.8883 0.9776
## Manchester:N-Fidalgo:H     1.388e-15 -0.6639 0.6639 1.0000
## Oyster Bay:N-Fidalgo:H     1.122e-01 -0.5517 0.7761 0.9998
## Fidalgo:S-Fidalgo:H        2.345e-15 -0.6639 0.6639 1.0000
## Manchester:S-Fidalgo:H     1.122e-01 -0.5517 0.7761 0.9998
## Oyster Bay:S-Fidalgo:H    -1.122e-01 -0.7761 0.5517 0.9998
## Oyster Bay:H-Manchester:H -1.122e-01 -0.7761 0.5517 0.9998
## Fidalgo:N-Manchester:H    -2.244e-01 -0.8883 0.4395 0.9776
## Manchester:N-Manchester:H -4.488e-01 -1.1127 0.2151 0.4539
## Oyster Bay:N-Manchester:H -3.366e-01 -1.0005 0.3273 0.8016
## Fidalgo:S-Manchester:H    -4.488e-01 -1.1127 0.2151 0.4539
## Manchester:S-Manchester:H -3.366e-01 -1.0005 0.3273 0.8016
## Oyster Bay:S-Manchester:H -5.610e-01 -1.2249 0.1029 0.1699
## Fidalgo:N-Oyster Bay:H    -1.122e-01 -0.7761 0.5517 0.9998
## Manchester:N-Oyster Bay:H -3.366e-01 -1.0005 0.3273 0.8016
## Oyster Bay:N-Oyster Bay:H -2.244e-01 -0.8883 0.4395 0.9776
## Fidalgo:S-Oyster Bay:H    -3.366e-01 -1.0005 0.3273 0.8016
## Manchester:S-Oyster Bay:H -2.244e-01 -0.8883 0.4395 0.9776
## Oyster Bay:S-Oyster Bay:H -4.488e-01 -1.1127 0.2151 0.4539
## Manchester:N-Fidalgo:N    -2.244e-01 -0.8883 0.4395 0.9776
## Oyster Bay:N-Fidalgo:N    -1.122e-01 -0.7761 0.5517 0.9998
## Fidalgo:S-Fidalgo:N       -2.244e-01 -0.8883 0.4395 0.9776
## Manchester:S-Fidalgo:N    -1.122e-01 -0.7761 0.5517 0.9998
## Oyster Bay:S-Fidalgo:N    -3.366e-01 -1.0005 0.3273 0.8016
## Oyster Bay:N-Manchester:N  1.122e-01 -0.5517 0.7761 0.9998
## Fidalgo:S-Manchester:N     9.576e-16 -0.6639 0.6639 1.0000
## Manchester:S-Manchester:N  1.122e-01 -0.5517 0.7761 0.9998
## Oyster Bay:S-Manchester:N -1.122e-01 -0.7761 0.5517 0.9998
## Fidalgo:S-Oyster Bay:N    -1.122e-01 -0.7761 0.5517 0.9998
## Manchester:S-Oyster Bay:N  6.384e-16 -0.6639 0.6639 1.0000
## Oyster Bay:S-Oyster Bay:N -2.244e-01 -0.8883 0.4395 0.9776
## Manchester:S-Fidalgo:S     1.122e-01 -0.5517 0.7761 0.9998
## Oyster Bay:S-Fidalgo:S    -1.122e-01 -0.7761 0.5517 0.9998
## Oyster Bay:S-Manchester:S -2.244e-01 -0.8883 0.4395 0.9776
#Makes ANOVA based on arcsine transform of brooders. Finds no differences which is also skewed.
repro4$prop<-repro4$Brooders/repro4$Gaping
#creates individual proportion for each sample date
repro4$arcsinprop<-asin(sign(repro4$prop)*sqrt(abs(repro4$prop)))
repro4$arcsinprop<-replace(repro4$arcsinprop,is.na(repro4$arcsinprop),0)
#arcsine transforms individual proportion data to normalize for use in ANOVA and TukeyHSD.
reproaov3<-aov(repro4$arcsinprop~repro4$Site+repro4$Pop+repro4$Site:repro4$Pop,repro4)
summary(reproaov3)
##                         Df Sum Sq Mean Sq F value  Pr(>F)    
## repro4$Site              2  0.258  0.1290   11.33 3.2e-05 ***
## repro4$Pop               2  0.127  0.0636    5.59  0.0048 ** 
## repro4$Site:repro4$Pop   4  0.029  0.0073    0.64  0.6335    
## Residuals              117  1.332  0.0114                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary.aov(reproaov3)
##                         Df Sum Sq Mean Sq F value  Pr(>F)    
## repro4$Site              2  0.258  0.1290   11.33 3.2e-05 ***
## repro4$Pop               2  0.127  0.0636    5.59  0.0048 ** 
## repro4$Site:repro4$Pop   4  0.029  0.0073    0.64  0.6335    
## Residuals              117  1.332  0.0114                    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
arcsinproptukey<-TukeyHSD(reproaov3)
print(arcsinproptukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = repro4$arcsinprop ~ repro4$Site + repro4$Pop + repro4$Site:repro4$Pop, data = repro4)
## 
## $`repro4$Site`
##                           diff      lwr     upr  p adj
## Manchester-Fidalgo    -0.03381 -0.08907 0.02146 0.3178
## Oyster Bay-Fidalgo     0.07450  0.01923 0.12976 0.0050
## Oyster Bay-Manchester  0.10830  0.05304 0.16357 0.0000
## 
## $`repro4$Pop`
##         diff       lwr     upr  p adj
## N-H -0.01821 -0.073473 0.03705 0.7147
## S-H  0.05645  0.001185 0.11171 0.0441
## S-N  0.07466  0.019394 0.12992 0.0049
## 
## $`repro4$Site:repro4$Pop`
##                                diff       lwr     upr  p adj
## Manchester:H-Fidalgo:H     0.004467 -0.122977 0.13191 1.0000
## Oyster Bay:H-Fidalgo:H     0.071372 -0.056071 0.19882 0.7015
## Fidalgo:N-Fidalgo:H       -0.013294 -0.140738 0.11415 1.0000
## Manchester:N-Fidalgo:H    -0.045447 -0.172890 0.08200 0.9689
## Oyster Bay:N-Fidalgo:H     0.079952 -0.047491 0.20740 0.5583
## Fidalgo:S-Fidalgo:H        0.086684 -0.040759 0.21413 0.4452
## Manchester:S-Fidalgo:H     0.012947 -0.114497 0.14039 1.0000
## Oyster Bay:S-Fidalgo:H     0.145553  0.018110 0.27300 0.0130
## Oyster Bay:H-Manchester:H  0.066905 -0.060538 0.19435 0.7696
## Fidalgo:N-Manchester:H    -0.017761 -0.145204 0.10968 1.0000
## Manchester:N-Manchester:H -0.049914 -0.177357 0.07753 0.9463
## Oyster Bay:N-Manchester:H  0.075485 -0.051958 0.20293 0.6341
## Fidalgo:S-Manchester:H     0.082217 -0.045226 0.20966 0.5198
## Manchester:S-Manchester:H  0.008480 -0.118963 0.13592 1.0000
## Oyster Bay:S-Manchester:H  0.141086  0.013643 0.26853 0.0184
## Fidalgo:N-Oyster Bay:H    -0.084667 -0.212110 0.04278 0.4786
## Manchester:N-Oyster Bay:H -0.116819 -0.244263 0.01062 0.1000
## Oyster Bay:N-Oyster Bay:H  0.008580 -0.118864 0.13602 1.0000
## Fidalgo:S-Oyster Bay:H     0.015312 -0.112131 0.14276 1.0000
## Manchester:S-Oyster Bay:H -0.058426 -0.185869 0.06902 0.8761
## Oyster Bay:S-Oyster Bay:H  0.074181 -0.053262 0.20162 0.6558
## Manchester:N-Fidalgo:N    -0.032153 -0.159596 0.09529 0.9968
## Oyster Bay:N-Fidalgo:N     0.093246 -0.034197 0.22069 0.3433
## Fidalgo:S-Fidalgo:N        0.099979 -0.027465 0.22742 0.2528
## Manchester:S-Fidalgo:N     0.026241 -0.101202 0.15368 0.9992
## Oyster Bay:S-Fidalgo:N     0.158848  0.031404 0.28629 0.0043
## Oyster Bay:N-Manchester:N  0.125399 -0.002044 0.25284 0.0575
## Fidalgo:S-Manchester:N     0.132131  0.004688 0.25957 0.0359
## Manchester:S-Manchester:N  0.058394 -0.069050 0.18584 0.8764
## Oyster Bay:S-Manchester:N  0.191000  0.063557 0.31844 0.0002
## Fidalgo:S-Oyster Bay:N     0.006732 -0.120711 0.13418 1.0000
## Manchester:S-Oyster Bay:N -0.067005 -0.194449 0.06044 0.7681
## Oyster Bay:S-Oyster Bay:N  0.065601 -0.061842 0.19304 0.7881
## Manchester:S-Fidalgo:S    -0.073738 -0.201181 0.05371 0.6631
## Oyster Bay:S-Fidalgo:S     0.058869 -0.068574 0.18631 0.8714
## Oyster Bay:S-Manchester:S  0.132607  0.005163 0.26005 0.0347
#ANOVA and TukeyHSD on Arcsine transformed proportions conservatively finds significant differences between pops and sites. More trust worthy due to normality.
Gapingsum<-ddply(repro4,.(Site,Pop),summarise,sum=sum(Gaping,na.rm=T))
#Summarises Gaping data for each pop at each site
Broodsum<-ddply(repro4,.(Site,Pop),summarise,sum=sum(Brooders,na.rm=T))
#Summarises Brooder data for each pop at each site
BroodGapingSum<-merge(Gapingsum,Broodsum,by=c("Site","Pop"))
BroodGapingSum<-rename(BroodGapingSum, c("Site"="Site","Pop"="Pop","sum.x"="Gaping","sum.y"="Brooder"))
BroodGapingSum$prop<-BroodGapingSum$Brooder/BroodGapingSum$Gaping
print(BroodGapingSum)
##         Site Pop Gaping Brooder     prop
## 1    Fidalgo   H    814       8 0.009828
## 2    Fidalgo   N    813       8 0.009840
## 3    Fidalgo   S    921      39 0.042345
## 4 Manchester   H    658       7 0.010638
## 5 Manchester   N    631       1 0.001585
## 6 Manchester   S    699      11 0.015737
## 7 Oyster Bay   H    931      26 0.027927
## 8 Oyster Bay   N    769      30 0.039012
## 9 Oyster Bay   S    883      69 0.078143
#Creates clean Data frame for Summarized data as well as creating raw proportion data from summaries
BroodGapingSum$ArcSine<-asin(sign(BroodGapingSum$prop)*sqrt(abs(BroodGapingSum$prop)))
#Arcsine transforms raw proportions but is not useful.
arcaov<-aov(BroodGapingSum$ArcSine~BroodGapingSum$Site+BroodGapingSum$Pop+BroodGapingSum$Site:BroodGapingSum$Pop,BroodGapingSum)
summary(arcaov)
##                                        Df  Sum Sq Mean Sq
## BroodGapingSum$Site                     2 0.02485 0.01242
## BroodGapingSum$Pop                      2 0.01544 0.00772
## BroodGapingSum$Site:BroodGapingSum$Pop  4 0.00344 0.00086
arcTukey<-TukeyHSD(arcaov)
## Warning: NaNs produced
## Warning: NaNs produced
## Warning: NaNs produced
print(arcTukey)
##   Tukey multiple comparisons of means
##     95% family-wise confidence level
## 
## Fit: aov(formula = BroodGapingSum$ArcSine ~ BroodGapingSum$Site + BroodGapingSum$Pop + BroodGapingSum$Site:BroodGapingSum$Pop, data = BroodGapingSum)
## 
## $`BroodGapingSum$Site`
##                           diff lwr upr p adj
## Manchester-Fidalgo    -0.04567 NaN NaN   NaN
## Oyster Bay-Fidalgo     0.08137 NaN NaN   NaN
## Oyster Bay-Manchester  0.12704 NaN NaN   NaN
## 
## $`BroodGapingSum$Pop`
##         diff lwr upr p adj
## N-H -0.01084 NaN NaN   NaN
## S-H  0.08194 NaN NaN   NaN
## S-N  0.09278 NaN NaN   NaN
## 
## $`BroodGapingSum$Site:BroodGapingSum$Pop`
##                                 diff lwr upr p adj
## Manchester:H-Fidalgo:H     4.026e-03 NaN NaN   NaN
## Oyster Bay:H-Fidalgo:H     6.860e-02 NaN NaN   NaN
## Fidalgo:N-Fidalgo:H        6.125e-05 NaN NaN   NaN
## Manchester:N-Fidalgo:H    -5.948e-02 NaN NaN   NaN
## Oyster Bay:N-Fidalgo:H     9.952e-02 NaN NaN   NaN
## Fidalgo:S-Fidalgo:H        1.080e-01 NaN NaN   NaN
## Manchester:S-Fidalgo:H     2.648e-02 NaN NaN   NaN
## Oyster Bay:S-Fidalgo:H     1.840e-01 NaN NaN   NaN
## Oyster Bay:H-Manchester:H  6.458e-02 NaN NaN   NaN
## Fidalgo:N-Manchester:H    -3.965e-03 NaN NaN   NaN
## Manchester:N-Manchester:H -6.351e-02 NaN NaN   NaN
## Oyster Bay:N-Manchester:H  9.550e-02 NaN NaN   NaN
## Fidalgo:S-Manchester:H     1.039e-01 NaN NaN   NaN
## Manchester:S-Manchester:H  2.245e-02 NaN NaN   NaN
## Oyster Bay:S-Manchester:H  1.800e-01 NaN NaN   NaN
## Fidalgo:N-Oyster Bay:H    -6.854e-02 NaN NaN   NaN
## Manchester:N-Oyster Bay:H -1.281e-01 NaN NaN   NaN
## Oyster Bay:N-Oyster Bay:H  3.092e-02 NaN NaN   NaN
## Fidalgo:S-Oyster Bay:H     3.936e-02 NaN NaN   NaN
## Manchester:S-Oyster Bay:H -4.212e-02 NaN NaN   NaN
## Oyster Bay:S-Oyster Bay:H  1.154e-01 NaN NaN   NaN
## Manchester:N-Fidalgo:N    -5.954e-02 NaN NaN   NaN
## Oyster Bay:N-Fidalgo:N     9.946e-02 NaN NaN   NaN
## Fidalgo:S-Fidalgo:N        1.079e-01 NaN NaN   NaN
## Manchester:S-Fidalgo:N     2.642e-02 NaN NaN   NaN
## Oyster Bay:S-Fidalgo:N     1.840e-01 NaN NaN   NaN
## Oyster Bay:N-Manchester:N  1.590e-01 NaN NaN   NaN
## Fidalgo:S-Manchester:N     1.674e-01 NaN NaN   NaN
## Manchester:S-Manchester:N  8.596e-02 NaN NaN   NaN
## Oyster Bay:S-Manchester:N  2.435e-01 NaN NaN   NaN
## Fidalgo:S-Oyster Bay:N     8.439e-03 NaN NaN   NaN
## Manchester:S-Oyster Bay:N -7.304e-02 NaN NaN   NaN
## Oyster Bay:S-Oyster Bay:N  8.449e-02 NaN NaN   NaN
## Manchester:S-Fidalgo:S    -8.148e-02 NaN NaN   NaN
## Oyster Bay:S-Fidalgo:S     7.605e-02 NaN NaN   NaN
## Oyster Bay:S-Manchester:S  1.575e-01 NaN NaN   NaN
#Arcsine transform on raw proportions fails due to lack of replicates
Proptest<-prop.test(BroodGapingSum$Brooder,BroodGapingSum$Gaping, conf.level=0.95)
print(Proptest)
## 
##  9-sample test for equality of proportions without continuity
##  correction
## 
## data:  BroodGapingSum$Brooder out of BroodGapingSum$Gaping
## X-squared = 139.2, df = 8, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
##   prop 1   prop 2   prop 3   prop 4   prop 5   prop 6   prop 7   prop 8 
## 0.009828 0.009840 0.042345 0.010638 0.001585 0.015737 0.027927 0.039012 
##   prop 9 
## 0.078143
#Proportion test with confidence levels. Doesn't have meaning.
ggplot(data=BroodGapingSum,aes(x=Site, y=prop, group=Pop, col=Pop))+
  geom_line(size=2)+geom_point(size=6)+
  scale_color_manual(name="Population",
                     labels=c("Dabob","Fidalgo","Oyster Bay"),
                     values=c("blue","purple","orange"))+
  labs(title="Raw Proportion of Brooders\nSite by Population",
       x="Site",y="Raw Proportion of Brooders")+
  theme_bw()+
  theme(axis.text.x=element_text(color=c("purple","red","orange"), size=20),
        axis.text.y=element_text(color="black",size=15),
        axis.title.x=element_text(color="black",size=25),
        axis.title.y=element_text(color="black",size=25),
        plot.title=element_text(color="forestgreen",size=35),
        legend.justification=c(0,1),
        legend.position=c(0,1))

plot of chunk unnamed-chunk-1

#Graph uses raw proportions of brooders to gaping animals produced at each site.
#ANOVA and Tukey test on proportions uses arcsin transformed data for normality
#ANOVA/Tukey Find that the Oyster Bay site is significantly Different from the other two sites
#ANOVA/Tukey Find that the Oyster Bay Pop is significantly Different from the other two pops.
#Individual interactions find that the Oyster Bay pop at Oyster Bay site is significantly
#different than all almost all other populations at all other sites including itself at Manchester 
#but not significantly different than the other two populations at Oyster Bay site

No comments:

Post a Comment